
www.manaraa.com

University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

September 2018

Using Self-Organizing Maps as a Forecasting Tool
Andrea Honor
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Atmospheric Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Honor, Andrea, "Using Self-Organizing Maps as a Forecasting Tool" (2018). Theses and Dissertations. 1826.
https://dc.uwm.edu/etd/1826

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1826&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=dc.uwm.edu%2Fetd%2F1826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1826?utm_source=dc.uwm.edu%2Fetd%2F1826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


www.manaraa.com

USING SELF-ORGANIZING MAPS AS A FORECASTING TOOL 

 
 
 

by 

Andrea Honor 

 

 

 

 

A Thesis Submitted in  

Partial Fulfillment of the  

Requirements for the Degree of  

 

 

 
Master of Science 

in Atmospheric Science 

 

 

 
at 

The University of Wisconsin-Milwaukee 

August 2018 

 
 



www.manaraa.com

	
ii	

ABSTRACT 

USING SELF-ORGANIZING MAPS AS A FORECASTING TOOL  

by 

Andrea Honor 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Paul J. Roebber 

 
 Some extreme weather events, such as the early season heavy snow and cold weather 

outbreak of early November 2014, can be traced back to the influence of tropical or extratropical 

cyclones on the planetary scale flow. Such planetary scale reorganization also occurs in 

conjunction with serial extratropical cyclogenesis. Potential temperature on the dynamic 

tropopause (defined by the 2 PVU surface) allows for a dynamically compact characterization of 

the flow. NCEP Climate Forecast Systems Reanalysis data spanning 32 years are used to provide 

this measure, and Self-Organizing Maps (SOM) are then constructed to identify our atmospheric 

regimes. Key elements of this analysis are the transitions between SOM regimes, which provide 

means for identifying increased regime predictability at medium and extended ranges. In this 

study, it was found that 30 regimes defined through the 32 year period were subjectively 

reasonable for characterizing the variety of hemispheric flow patterns that are observed. The 

probability of transitions between these regimes over certain time scales (e.g., 10 days, 20 days, 

and 30 days) was estimated with these same data.  This analysis revealed a statistically 

significant tendency (at the 95% confidence interval) for recurrent patterns at the 30 day lead 

time, which presents some additional information that may be used in the context of extended 

range forecasting.   
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I. INTRODUCTION 

Northern Hemispheric flow predictability at subseasonal time scales beyond one week 

depends greatly on interactions between tropical, midlatitude, and polar disturbances. Cool 

season atmospheric predictability on subseasonal time scales over the Continental United States 

(CONUS) are critically dependent on the structure, configuration, and evolution of the North 

Pacific jet (NPJ) stream (Winters et al. 2017). While the NPJ can be perturbed on its tropical side 

on synoptic time scales from tropical cyclones and on subseasonal time scales by longitudinally 

varying convection, the North Pacific jet stream can be perturbed on its poleward side due to 

midlatitude and polar disturbances on a synoptic scale that originate over the Asian Continent. 

According to Roebber et al. (2016), these midlatitude and polar disturbances in turn act as the 

catalyst for downstream Rossby wave propagation across the North Pacific, North America, and 

the North Atlantic.  

These downstream Rossby waves that are triggered by midlatitude and polar disturbances are 

seen as a causation of downstream extreme weather events that can occur over the CONUS. Two 

specific events acted as the motivation for this project, the first being a major forecast bust that 

can be traced back to the extratropical transition of Supertyphoon Nuri upstream in the western 

Pacific in early November 2014. Figures 1-2 show a series of schematic representations of the 

large scale upper-level flow evolution preceding and following extratropical transition of 

Supertyphoon Nuri, across the North Pacific and North America between 4-18 November, as 

first shown by Lance Bosart and collaborators (Bosart, personal communication, 2017). Prior to 

the extreme weather over the CONUS, Supertyphoon Nuri achieved a minimum central pressure 

of around 910 hPa just southeast of Japan. Subsequently, this storm underwent extratropical 

transition after November 6th and then explosively deepened as an extratropical cyclone at a rate 
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of 60 hPa in 30 hours to a central pressure of 924 hPa. This reintensification was due in part to a 

cold surge from the Asian continent that had established a strong baroclinic zone across the 

western North Pacific (Figure 1). Meanwhile downstream over the CONUS, the explosive 

extratropical cyclone reintensification of former Supertyphoon Nuri triggered an eastward-

propagating Rossby wave train and downstream flow amplification.  Next, secondary 

downstream cyclogenesis over the Gulf of Alaska associated with the Rossby wave train resulted 

in a high-amplitude omega block over western North America by November 11th, with a full 

omega block observed by November 15th (Figure 2), and a “bent-back” omega block by 

November 18th (Roebber et al. 2016). Three linked and clustered arctic cold surges subsequently 

occurred over the conus in conjunction with three polar anticyclones, allowing progressively 

colder air into the CONUS. During this time period, an early season heavy snow and cold 

weather outbreak took place, resulting in 150-200 cm of snow in Buffalo, NY, as well as 2,677 

minimum temperature records (Figure 3) broken across the CONUS in November of 2014 

(Roebber et al. 2016). This event in particular posed significant troubles for forecasters weeks 

prior to the event, and was not anticipated more than a few days in advance. NCEP CFSv2 2-m 

temperature forecasts run between 12-21 October and 21-31 October 2014 indicated above 

average temperatures, while the verification showed below average temperature for everywhere 

east of the Rockies.  

The second example of clustered cyclogenesis occurred over the eastern CONUS between 

late January to mid-February 2015 and can be seen in Figures 4-5. This event resulted in 

anomalously strong ridges over the northwestern Pacific and western North America as well as 

anomalously strong troughs over the Arctic Ocean, northern Canada, the east-central North 

Pacific and along the east coast of the CONUS. This particular setup favored two storm tracks, 
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the first being a moisture rich track that extended from the subtropical eastern Pacific poleward 

toward the Gulf of Alaska then back over the western North American ridge and back 

southeastward across the CONUS east of the Rockies (Figure 4). The second track extended 

from northern Russia across the western Arctic ocean southeastward toward the eastern CONUS 

(Figure 4). Unlike the first track, the second track lacked moisture but had the advantage of 

enhanced low-level baroclinicity across western Canada and parts of the eastern CONUS (Figure 

5). These two favored tracks were important because as they united, they increased the likelihood 

of disturbances having the capability of reaching the eastern CONUS due to the moisture rich 

subtropical air from track 1 as well as the enhanced downstream low-level baroclinicity from 

track 2. This setup led to nearly 250 cm of snowfall in Boston, MA between 24 January and 16 

February (Roebber et al. 2016).  

Considering these two scenarios, the goal of this study is to study the life cycle of similar 

weather regimes in order to improve medium-range weather prediction. In past studies work has 

been done to analyze the physical mechanism of surface cyclone intensification (e. g., Gyakum 

1983ab; Bosart 1981; Bosart and Lin 1984), while some more recent studies have considered the 

relationship between these cyclones and planetary-scale circulation features (e.g., Anderson and 

Gyakum 1989; Roebber 2009; Cordeira and Bosart 2010, 2011). In these studies, the presence of 

clustering of surface cyclones during 7-20 day periods is noted, with some focus also being on a 

week-long period while several meteorological ‘bombs’ occurred over the North Atlantic basin 

in which this period also followed a record-breaking cold-air outbreak over North America 

(Turner et al. 2013). In addition, more recent studies have examined significant serial clustering 

of extreme explosively developing cyclones during late January to early February 1972, after 

which a strongly negative Arctic Oscillation occurred. During this time, significant anomalously 
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cold air dominated the northern part of the basin, while anomalously warm air dominated the 

southern region of the basin. This resulted in a significant zonal jet at 250 hPa across the basin 

that averaged more than 120 knots from February 1st to the 4th (Roebber et. al. 2016). This jet 

streak was significant in that two explosively developing cyclones developed on the right 

entrance region of the planetary-scale jet in a region of near-neutral effect static stability. During 

this event, a positive feedback cycle was supported between the explosive cyclogenesis and the 

jet amplification. These types of events are significant, in that they may provide insight into 

development of a persistent weather regime, or a blocking pattern.  

Roebber (2009) found that changes in the strength of zonal flow following cyclogenesis are 

connected to flow patterns reminiscent of PV filament shedding and tightening of the PV 

gradient on one hand, and PV wave-breaking anticyclonic roll up on the other. These findings 

are significant in that they provide opportunities to develop dynamical-statistical forecast 

products that form the operational basis of this work. Physical processes associated with the 

relationship between planetary-, synoptic-, and mesoscale processes need to be investigated to 

determine the dynamical and thermodynamical processes that govern the generation, 

maintenance, and decay of the planetary-scale jet as the planetary-scale environment that 

facilitates the life cycles of mesoscale convective systems and synoptic-scale cyclones associated 

with extreme weather.  

 As a first step, this study will analyze historical reanalysis data, and categorize individual 

weather regimes using a machine learning tool called a Self-Organizing Map (SOM). The 

purpose of doing this is to form the foundation for a suite of hybrid, dynamical-statistical 

forecast products that will help forecasters to improve weeks two-to-four operational predictions. 

Considering surface cyclone clustering and other extreme weather phenomena, the goal of this 
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study is to analyze and categorize phenomena that are directly linked to environmental metrics 

from synoptic to subseasonal scales. These examples may include surface cyclone clustering, 

flow regimes associated with blocking, anomalous large-scale flow regimes (e.g. major 

teleconnection indices such as PNA, AO, and NAO beyond +/- 1 sigma) and MJO-related 

intraseasonal variability.  

Once the atmospheric regimes are classified, we will estimate the transition probability 

between regimes for a range of time periods. Keeping this in mind, the goal is to be able to better 

predict regime transitions after the 2- to 4-week time scale, and thereby better predict the 

probability of extreme weather associated with each regime. Future work will connect regime 

behaviors to cyclogenesis. 
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II. DATA AND METHODS 

NCEP Climate Forecast Systems Reanalysis (CFSR) data for the 32 year period from 

January 1979 to December 2010 is used to derive theta on the dynamic tropopause (DT) defined 

by the 2 PVU surface and theta-e at 850 hPa were used in this study. These data were further 

restricted to northern hemisphere latitudes from 30-90°N and coarsened from the original 0.5 

degree grid spacing to 4 degrees in order to focus on synoptic-to-planetary scale rather than 

mesoscale features.  

The next data treatment step was to normalize these data using standardized anomalies 

(Grumm and Hart 2001) and to remove seasonality, which was accomplished as follows. First, 

the standard deviation (σ) was computed: 

     𝜎 = #
$

(𝜃 − 𝜃))   (1) 

 
where θ is the data variable (such as theta on the DT or theta-e at 850 hPa), and N is the total 

number of days in each month. The monthly means were also calculated for each variable as: 

     𝐶 = #
$

𝜃    (2) 

 
and then the standardized anomalies (k) were computed:  

     𝑘 = ,-.
/

       (3) 

 
Using standardized anomalies rather than raw variables allows for feature-based comparisons 

across seasons. Since this method offers comparisons across all seasons throughout the 1979 to 

2010 period, however, it does not account for climate non-stationarity. 

Next, these data are analyzed using Self-Organizing Maps (SOMs). SOMs allow for the 

identification of nearly continuous synoptic categorizations, which will be useful when 
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considering the transitions between synoptic states over the time scales of interest in this study 

(up to one month). After training, we can inspect the resulting SOM classifications through an 

objective classification called a Biplot, an enhanced scatterplot that uses both points and vectors 

to represent structure and similarity via Principal Component Analysis (Young 1999). This plot 

allows a visualization of regime similarity.  

The SOM algorithm uses competitive machine learning to represent the probability density 

function of a dataset using a two-dimensional grid of map nodes (Gervais et al. 2016). This 

allows for the classification of large volumes of data into a predetermined number of archetypes 

that are then categorized based on their similarities. When comparing a SOM over a traditional 

EOF, there are a few advantages. First, there is a lack of restrictions to orthogonality and 

stationarity of identified patterns. Processes in the atmosphere are not always represented by 

orthogonal patterns, and hence a SOM can identify sets of nonorthogonal patterns in data more 

effectively that may also be more physically relevant. 

The main purpose of a SOM is to capture the internal variability of a certain variable(s) over 

a special scale. When utilizing a SOM, the grid size is user defined, and chosen as a way to 

represent the distribution required for the study. Many different studies have used a wide range 

of node numbers and arrangements. For example, Lennard and Hegerl (2015) used a 3 by 4 node 

SOM (12 nodes) for their study, while Cassano et al. (2015) argued that a larger SOM over a 

smaller SOM provides optimal interpretability over their region of interest and employed a 5 by 

7 node SOM (35 nodes).  In our study, a 5 row by 6 column SOM (resulting in 30 regimes) were 

visually inspected to insure that the regimes captured the breadth of broader scale flow states and 

the transitions between them. If we were to increase the size of the SOM, smaller scale features 

would become more dominant in the regime classifications. Conversely if we were to decrease 
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the SOM size, then large scale atmospheric features would dominate and we would capture less 

of the internal variability through the period.  

When analyzing theta on the DT and theta-e at 850 hPa, specific signatures such as 

tropospheric coupling can be analyzed. Any sign of a coupling feature is indicative of low static 

stability leading to more response to a given level of dynamical forcing and thereby increased 

cyclogenesis. If a specifically classified regime contains a coupling signature, one can better 

infer that increased cyclogenesis may occur within that current regime. Another advantage of 

using theta on the DT and theta-e at 850 hPa is one can infer associated thermodynamics and 

wind fields with a particular PV anomaly (Hoskins et al. 1985). 

Once the regimes are defined, the next main step will be to estimate the transition 

probabilities. In order to do this, we will analyze the frequency of each regime transition from an 

initial regime to a final regime after an allotted amount of time. For each day throughout the data 

period, a single regime will be assigned based on its correlation to the mean regime centroids. 

Therefore, the boundaries for the initial and final regimes is defined as the assigned regime at the 

initial time step to the assigned regime at the final time step. Using this method, we will analyze 

the probabilities of regime transitions after 10 days, 20 days, and 30 days. Once these 

probabilities are calculated, we can test statistical significance using a simple bootstrap statistics 

test. Understanding if there are favored regime transitions and associated pathways between 

particular regimes is a fundamental goal of this research, as that understanding can form the basis 

for a probabilistic suite of forecast tools.  

 As stated in the previous section, one of the goals of this study will be to analyze and 

categorize phenomena that are directly linked to environmental metrics from synoptic to 

subseasonal scales. These phenomena may include surface cyclone clustering as well as 
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atmospheric flow regimes associated with blocking, but in particular we will look into large-

scale flow regimes such as major teleconnection indices such as PNA, AO, and NAO. To do this, 

we will correlate the daily observed regime assignment (out of our 30 total regimes) with the 

observed teleconnection indices. Ideally, this analysis will highlight the individual regimes, if 

any, that correlate well with large scale flow and hence feature dominant large scale features.  
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III. RESULTS AND DISCUSSION 

As stated previously in the Data and Methods section, 30 total regimes were classified using 

a 5x6 SOM matrix. The main dimensions of the SOM were specified in this way in order to 

capture large scale features, while also including smaller scale atmospheric features such as 

intermediate wave scale patterns. When creating these atmospheric regimes using the SOM, we 

started by keeping the DT data separate from the 850-hPa data by creating a SOM strictly with 

the DT data, then another separate SOM with the 850 hPa data. Once that was completed, we 

created a SOM using the DT data overlaid with the 850-hPa data. When comparing the overlaid 

data regimes with the DT data regimes, it was found that the 30 regimes for all three separate 

SOM maps were nearly identical in structure. The similarity between the DT SOM maps and the 

850 hPa maps can be seen as an indication of scale. The previously discussed coupling is most 

expressed at synoptic and sub-synoptic scales, and therefore the DT and 850 hPa data maps on to 

each other. Given the focus of this research on planetary scale wave transitions, hereafter we 

define regimes using only the DT data. 

After defining the 30 regimes in this way, the next step was to analyze the frequency of a 

regime transition, or transition probability (TP). When analyzing TPs, we looked at 3 different 

time scales: 10 day lead time, 20 day lead time, and 30 day lead time. Starting with the 10 day 

transition probabilities as shown in Figure 6, the initial regime is numbered on the x-axis while 

the y-axis displays the final regime, where each corresponding box represents the TP from the 

initial regime to the final regime. Looking closely into the 10 day TPs, we can see that the 

highest TP is from regime 1 to regime 30 with a TP of 10%. The next highest TP was found to be 

around 8.1% with a transition from regime 23 to regime 24. Following those higher percentages, 

there is no clear pattern or grouping found in areas with higher or lower TPs.  
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The next step was to analyze the TPs on a longer time scale such as 20 days. Referring to 

Figure 7 we can see similar characteristics in TPs as what was seen in our 10 day TPs. That is, 

there is no significant grouping or significantly high TPs to note. The highest probabilities found 

for the 20 day time range peaked at 8.1% with a transition from regime 2 to 24, with the next 

highest at 7.4% for the transition from regime 11 to regime 30. Overall the main data percentages 

ranged from 1% to 5%.  

The last time scale that was analyzed for the TPs was 30 days. Referring to Figure 8, we can 

see an increase in higher TPs. For example, for 6 total transitions, the TP was greater than 8%. 

For the 30 day time period, we can also spot individual groupings. Starting on the left side of the 

diagram, there are clear higher probabilities for the transitions from regimes 1 to 9, 1 to 10, 1 to 

18, 2 to 13, 3 to 6, 3 to 14, 4 to 17, and 6 to 10. In addition to these individual higher TPs, we can 

see an interesting tendency for recurrence with higher TPs for regimes 23 to 27. This result is 

distinct from the previous time scales discussed (10 day and 20 day). These higher TPs were also 

found to be statistically significant. A bootstrap statistics test for the 30-day TPs found numerous 

high and low transitions that are statistically significant at the 95% confidence interval (Figure 

9).  

As a check on climate non-stationarity (subject to the limitations of the period-based mean 

and standard deviation calculations previously discussed), we also considered temporal changes 

in the regime frequencies of occurrence. For example, if the year 1994 had a higher frequency of 

regime 14 occurring, then there may be some hint of some potential climate influence during that 

time period. Upon analyzing this temporal frequency, we did not detect any non-stationarity in 

climate that shifted individual regime frequencies (Figure 10). 
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The next step was to visually see how these regimes relate to one another spatially by using a 

Biplot. A Biplot uses points to represent the scores of the observations on the principal 

components, and it uses vectors to represent the coefficients of the variables on the principal 

components. On the x-axis, which represents the first principal component, the data is aligned 

orthogonal to this axis and positioned to represent the maximum/minimum variation through the 

data. Then along the y-axis, which represents the second principal component, the data is aligned 

to represent the next highest variation through the data. In our case, both axis’ will represent the 

orientation of the data spatially. The x-axis will represent the varying differences in sign of the 

standard anomalies by latitude. For example, if one regime resembles a positive anomaly 

dominating the arctic while another resembles opposite characteristics with a negative anomaly 

dominating the arctic, then these two regimes will be on opposing ends of the x-axis. The y-axis 

then resembles the orientation and location of the PV anomalies longitudinally in the meridional 

flow patterns. For example, if one regime were to resemble a strong positive anomaly 

somewhere over North America with a strong negative anomaly over Europe and Asia, while 

another represents opposite characteristics with a strong negative anomaly over North America 

and a positive anomaly over Europe and Asia, then these two regimes would be on opposite ends 

of the y-axis. The relative location of points corresponds to similarities or differences, i.e. the 

closer the points the more similar the components are.  

Referring to the BiPlot in Figure 11, the relationships between the regimes can be noted. 

Starting with the right side we see regimes 2, 3 and 4 as the right-most regimes. In Figures 13-15 

one can note that these regimes are very linear with a positive anomaly dominating the pole and 

negative anomalies to the south. Conversely if we refer to the regime 28 circle, we can note in 

Figure 39 that this regime is a mirror image of regimes 2, 3, and 4, where a negative anomaly 
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dominates the pole with positive anomalies to the south. This confirms that the x-axis represents 

the latitudinal orientation of the negative and positive anomalies. Meanwhile the y-axis 

represents the longitudinal variation of the sign of the PV anomalies. We can spot this by 

comparing regime 1 and regime 5. Referring to Figure 12, regime 1 features a deep positive 

anomaly stretching from the pole down to northern Canada and Alaska while a deep negative 

anomaly dominates east of Greenland and north of Europe. Regime 5 however as noted in Figure 

16 displays differing features. A negative anomaly can be spotted over northern Canada while a 

positive anomaly can be spotted east of Greenland and north of Europe, opposite than that of 

Regime 1. This confirms that the y-axis orientation and location of the PV anomalies 

longitudinally in the meridional flow patterns.  

Now understanding how the orientation of the BiPlot relates to regime spatial relationships, 

we can infer the similarities between the regimes with the high TPs from the 30 day lead time 

that were statistically significant. Starting with regime 1 transitioning into 9, 10, or 18, we can 

first spot that regimes 9 and 10 are close to a one another on the BiPlot while regime 18 is 

slightly more to the left. Interestingly, all of these regimes are distant from the initial regime 1, 

suggesting that there is still a substantial difference in spatial orientation of these regimes. When 

looking at the regimes with a recurring pattern (23-27) there are some similarities suggested by 

the BiPlot. In this chart, regimes 23-27 all lie on the left side of the chart. While there is less 

variation in the x-axis (regime 25 is more neutral while regime 23 is more negative), the greater 

differences are spotted along the y-axis where 23, 27, and 26 are positive while 24 and 25 are 

negative. The greatest similarities can be spotted with regimes 23, 26 and 27 as they are all 

positioned in the positive y, negative x quadrant together. Altogether, this BiPlot suggests 

stronger similarities for this recurrent flow group than that of the 1-9, 10, 18 group.  
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 Given that there are recurrent flows, it is of interest to determine whether there are 

preferred pathways or “tracks” that are followed during the 30 day period. In other words, if an 

initial regime is 23 and after 30 days, the flow returns to 23, what are the regimes that take place 

in between these times, and are these transitions consistent from one case to the next? In order to 

test this, a subset was taken from the data only including cases where the initial regime was 

within regimes 23 to 27, and ended at any regime in that same grouping. Referring to Figure 42, 

our initial regime is denoted as Initial and is in blue representing the starting point at the bottom 

row of the graph. As we move upwards each bar represents the next 5 days, i.e. pink represents 

the spread of the new regimes after 5 days, light green represents the spread of the new regimes 

after 10 days, etc, until we reach the 30 day mark represented in purple at the top of the chart. It 

is evident that there is no preferred track or pathways for these transitions on the way to 

recurrence. As denoted by each boxplot for each transition time step, there is considerable spread 

for each case. We can however see some hinting at groupings for the 5-day and 25-day time 

steps, where there appears to be a higher frequency of transitions in the 23 to 27 regime group.   

 In a study done by Plaut and Vautard (1993), a multichannel version of the singular 

spectrum analysis (M-SSA) is used to identify dynamically relevant space-time patterns, much 

like the way a principal component analysis identifies the spatial patterns dominating variability. 

Three major low-frequency oscillations were found where the periods ranged from 70 days, 40-

45 days, and 30-35 days. It was found by Plaut and Vautard that in particular, the occurrence of 

the Euro-Atlantic blocking regime was strongly favored by the particular phases of the 30-35 day 

mode which were found to be naturally confined over the Atlantic region. When looking at the 

transitions of regimes, it was found that a transition from a zonal to blocking regime was highly 

connected to the life cycle of the 30-35 day mode. This was found to indicate that regime 
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transitions do not result only from random occurrence of particular transient eddy forcing, and 

that there are preferred paths between weather regimes. This finding by Plaut and Vautard (1993) 

supports our findings of recurrent weather regimes after 30 days. Considering these results, the 

potential for long-range forecasting for large-scale environment-favoring weather regimes has 

the potential to be improved, particularly 30 days in advance. As stated, the phases of the 30-35 

day mode found by Plaut and Vautard (1993) were found to be confined over the Atlantic region. 

Interestingly, the North Atlantic region coincides with the location of the peak anomalies in most 

of our recurring regimes (23-27), an important exception being regime 27 where the peak 

anomaly is in the North Pacific. This latter result may suggest a connection to North Pacific 

blocking but this is an aspect beyond the scope of the current study. Plaut and Vautard (1993) 

found that the conditional probability of the occurrence of blocking is enhanced with a 30 day 

lead time relative to climatological probability. This further supports the value of our findings for 

significant transition probabilities up to 30 days in advance. 

Simply based on how Figures 12-41 are structured, one may wonder if any of these 

regimes are related to teleconnection indices. For example, regime 11, as seen in Figure 22, 

appears to show characteristics of a positive Pacific/North American (PNA) pattern suggesting 

that relationships to teleconnection patterns could be possible in some of these regimes. 

Correlations with three separate teleconnection indices were analyzed, including the Arctic 

Oscillation (AO) and the North Atlantic Oscillation (NAO) in addition to the PNA 

teleconnection. Throughout the data spanning 32 total years, each day had an observed 

teleconnection index for each of the three teleconnections analyzed, as well as a regime that was 

assigned based on the individual day’s correlation to the mean regime centroid. We then 

compared the individual days that had assigned regimes ranging from 1 to 30 to the observed 
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teleconnections based on those assigned regimes. The overall intent was to find any positive or 

negative index trend for any of the individual regimes. Starting with the PNA index compared 

with the original data as seen in Figure 43, there was no such correlation found.  In this Figure, 

the spread of the observed PNA with each assigned regime grouping was found to be large, 

indicating that there was no discernable strong relation to the PNA index with the raw data. We 

performed this same analysis with the AO and NAO indices, as shown in Figures 44 and 45, and 

found similar results where no discernable strong relation between these regimes and the AO or 

NAO teleconnections patterns was found. This result was not entirely surprising, particularly 

when you consider what each individual day PV anomaly field looked like.  

For example, considering Figure 46 we can see the observed PV anomalies on 28-30 June 

2010. On these days, similar to all other days in the data, there was a lot of noise spatially, and 

therefore no strong and discernible relationship to the characteristic positive or negative 

teleconnection patterns. In order to get a better sense as to the correlation between regime groups 

and observed teleconnection indices, filtering was done on the individual days. With the primary 

goal of filtering out the days in the data with small scale noise, we looked at the correlation of 

each day with the 5 Leading Principal Components (PCs). If the correlation of the 5 Leading PCs 

to an individual day was greater than or equal to 0.6, that individual day was included, otherwise 

all other days with correlations of less than 0.6 were excluded. This filtering alone helped cut out 

the noisy day data which excluded regime groups 9-15, 17-26, and 30, indicating that the 

remaining regimes have characteristic dominating large scale features. Starting with PNA as seen 

in Figure 47, we start seeing more indications of positive or negative correlations. For example, 

the regime 1 group displays a positive PNA index correlation, while the regime 5 group displays 

a negative PNA index correlation. While some individual regime groups displayed positive or 
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negative correlations, others, such as regime group 2, still had a bit of noise and didn’t suggest 

any particular relationship to a PNA pattern. Similar findings were seen for the NAO and AO 

teleconnection pattern correlations. Figure 48 displays the same data as Figure 47 but with the 

spread of the AO and NAO teleconnection patterns in addition to PNA for comparison purposes. 

Similar to the PNA pattern, the AO and NAO patterns show signs of correlating with individual 

regime groups. For example, regime group 16 shows signs of a correlation with positive NAO 

and AO while a negative PNA pattern is hinted. While this particular group has distinct 

relationships between the teleconnections displayed, other regime groups still have a bit of noise 

associated with the teleconnection patterns. For example, looking at regime group 1, we see an 

association with a positive PNA index, however while that particular pattern has a more 

discernible correlation, the other two teleconnection patterns still show quite a bit of spread and 

noise. This indicates that while some regime groups, such as group 16, appear to be a possible 

combination or interaction between teleconnection patterns, others, such as regime group 1, may 

be more associated with one teleconnection pattern and not others. While much of the filtered 

data still did not show any discernible relationship, there are many other teleconnection patterns 

to consider that were not analyzed in this study that may be related to those other regime groups.  

While it’s clear that many of the regimes did not have strong connections with 

teleconnection patterns, previous research by Vigaud et al. (2018) proved that atmospheric 

weather regimes on a sub-monthly time scale may have clear connections to large-scale 

teleconnection patterns. In their study, day-to-day variability in atmospheric circulation over 

North America is examined during the extended winter season using daily 500 hPa geopotential 

from 1982 to 2014 with the primary focus on recurrent weather regime reproducibility and 

predictability using ECMWF ensemble forecasts. In their study four weather regimes were 
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classified using a K-means clustering technique on daily Z500 fields from MERRA data. Of 

those four regimes, regime 2 was found to correspond to the negative phase of the NAO, while 

regime 4 closely resembled the negative phase of the PNA pattern. Of those two, regime 2 by 

Vigaud et al (2018) correspond well with our regimes 5 and 16 in terms of correlations with the 

PNA and NAO indices. That is, our regimes 5 and 16 corresponded with negative NAO indices 

and positive PNA indices. Interestingly enough, Vigaud et al. (2018) found that regimes 2 and 4 

corresponded well with the variability of the mean position of the jet over the North Atlantic. 

While this resembles somewhat well with our regime 5 (Figure 16), our regime 16 (Figure 27) 

appears to resemble the primary modes of variability in the mean position of the jet over the 

North Pacific Basin. One important factor to note in these results compared to Vigaud et al 

(2018), is the comparative number of regimes. As stated previously, an increased SOM size 

results in greater amount of internal variability to be realized in each regime. Since Vigaud et al 

(2018) used 4 regimes to classify atmospheric variability as compared to our 30, it should be 

assumed that their 4 regimes contain the more of the dominant large scale features with natural 

correlations with teleconnection patterns. Any realization in a teleconnection pattern is important 

in an atmospheric regime, as Vigaud et al (2018) found evidence of accuracy in model’s 

deterministic forecasts in the 1-7 day range, where an ensemble mean proved best while also 

providing a more robust representation of large-scale teleconnection patterns.  

While Vigaud et al (2018) showed that forecast skill can be improved on a shorter time 

scale from 5-20 days due to correlations with teleconnection patterns, additional insight can be 

added to 30 day lead times when considering the high transition probability groups found, 

including the recurrent patterns that were found to be statistically significant. As observed in 

Vigaud et al (2018), for week 1 and 2 lead times, regime counts were forecasted with little bias 
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for the extended winter season. However, by the week 3 lead time and beyond, significant 

differences began to appear between the observed and forecasted monthly counts. In this case, 

ECMWF forecasts were underestimating days spent in their regimes 1 and 3 and overestimating 

days spent in their regimes 2 and 4. This may reflect the lesser predictability of intermediate 

scale wave pattern after 2 weeks compared to larger scale teleconnections. This is an area where 

our smaller scale regimes appear to have an advantage. While our 30 regimes lack in regards to a 

strong correlation with large scale teleconnection patterns compared to Vigaud et al (2018), 

our regimes capture more internal variability and therefore can detect intermediate scale wave 

patterns. Referring back to our transition probabilities discussed previously, our transitions with 

higher percentages increase in number and magnitude as we near the 20 day lead time and 

especially the 30 day lead time. These transition probabilities provide insight on preferred 

transitions after 20 or 30 days.  

Agel et al. (2018) performed a very similar study in which large-scale meteorological 

patterns associated with extreme precipitation in the northeastern CONUS were examined. This 

study included very similar methods, including the use of a 5x6 SOM to organize the patterns 

that may be related to extreme weather by using pressure anomalies on the Dynamic Tropopause. 

In that study, the extent to which large-scale meteorological patterns can “explain” extreme 

precipitation is addressed, and whether there were any distinguishing features associated with 

each SOM pattern that occur on extreme-precipitation days. To do so, the mean correlation of 

individual days (both extreme precipitation and non-extreme precipitation days) to their assigned 

SOM pattern was calculated. Of the 30 total SOM patterns created by Agel et al. (2018), the 

spatial correlation was slightly higher on extreme days than on non-extreme days for only 4 of 

the 30 SOM patterns and were found to be significant at the 0.05 significance level. These SOMs 
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consisted primarily of trough patterns, however there were some ridge patterns that also had 

higher correlations on extreme days but these were not found to be statistically significant at the 

0.05 level. There was also one SOM pattern that had fewer extreme precipitation days than non-

extreme precipitation days, where the correlations were also found to be small on extreme 

precipitation days. Understanding how regime patterns are associated with extreme weather is 

another vital piece to this puzzle. While in our research the use of transition probabilities is 

addressed to better predict regime transitions, Agel et al. (2018) proposes a practical approach to 

further improving forecasting skill through associating each regime with a measure of extreme 

weather probability. In addition to being able to better predict the onset of extreme weather, we 

may better predict the persistence of extreme weather through the use of SOMs. According to 

Agel et al. (2018) nearly every SOM pattern of their 30 featured extreme precipitation days with 

a longer mean pattern duration than that of the non-extreme precipitation days, however only 2 

of the 30 SOM patterns were found to be statistically significant based on a Monte Carlo 

approach. This too provides additional value to the use of a SOM as a forecasting tool. 

Altogether understanding which regimes have a tendency to produce significant extreme weather 

for a longer duration holds value, and combining that knowledge with an understanding as to 

which regimes have a higher probability of transition provides the potential for a valuable 

forecasting tool.  
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IV. SUMMARY AND CONCLUSION 

This study aimed at documenting and capturing atmospheric variability over North America 

through the years 1979 to 2010. This was done through a machine learning tool called a Self-

Organizing Map, in which 30 total regimes were created using standardized anomalies of Theta 

on the Dynamic Tropopause. Of the 30 total regimes, only 11 of those were found to have a 

correlation of 0.6 or greater to the 5 Leading PCs, indicating that these Regimes in particular are 

the more robust regimes. When comparing these regimes to teleconnection indices, it was found 

that there was even less correlation to large scale teleconnection patterns. However, some 

regimes hinted at some correlations to the NAO, PNA or AO indices indicating that while most 

of the regimes have too much internal variability to show any large-scale relationship, there are a 

few such as regimes 1, 5, 8, 16, and 27 that hint at some positive or negative correlation. These 

results agree somewhat with Vigaud et al (2018), however in their study they only had 4 regimes 

classified compared to our 30, suggesting that their 4 regimes naturally have dominant large 

scale features embedded.  

In regards to predictability and transition probabilities, it was found that from 10 day lag, 20 

day lag, and 30 day lag, our peak transition probability was around 10%. Starting at 10-day lead 

time, there was only one transition that peaked at 10%. Similarly, the 20-day lead time transition 

probabilities showed some peak percentages for transitions at 8.1% while the bulk of the 

transitions ranged between 1-5%. Apart from those higher percentages for the 10 day and 20-day 

lead time probabilities, the rest of the probabilities were insignificant compared to chance 

between the different regimes. When analyzing the 30-day lead time probabilities, larger 

percentages were found more frequently, with one grouping of recurrent flow also found. These 

probabilities were found to be statistically significant on the 95% confidence interval based on a 
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bootstrap statistics test. The recurrent regime probabilities found coincide with results found by 

Plaut and Vautard (1993) where similar preferred paths and recurrent regime flows were found 

on phases of a 30-35 day oscillation.  

When testing for relationships between the regimes and teleconnection patterns, it was found 

for the daily raw data that there was very little discernible relationship between the observed 

NAO, PNA, or AO indices and the observed regime. After filtering the data to only days with 

correlations to the 5 Leaking PCs up to 0.6, we began to see some relationships emerge. For 

instance, regime 16 corresponded with a positive NAO and AO index and a negative PNA index. 

However, even when performing the filtering, many of the remaining regimes had too much 

noise and variation to show any clear teleconnection relationship.  

Overall, the Self-Organizing Maps provide a beneficial tool in forecasting. Through this 

research, we were able to utilize the frequency of each SOM to calculate the transition 

probabilities for each respective regime for as long as 30 days out. Combining that knowledge 

with the ability to associate each regime with observed extreme weather as Agel et al. (2018) 

showed brings on the possibility for improved guidance for extreme weather as far as 20-30 days 

in advance. 
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Figure 1. Schematic map of the observed large- scale flow structure across the North Pacific and 

North America prior to the extratropical transition of Supertyphoon Nuri at 0000 UTC 4 
November 2014. Symbols as shown on the legend. Source: Bosart (2017) 

 
Figure 2. As in Fig. 1 except for the established high-latitude omega block at 1200 UTC 15 

November 2014. Legend is as in Fig. 1. H1, H2, and H3 denote the locations of the anticyclones 
associated with three cold surges. Source: Bosart (2017) 
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Figure 3. CONUS minimum temperature records broken between 16–22 November 2014. 

Source: National Climate Data Center 

 
Figure 4. Northern Hemisphere 300 hPa mean geopotential height (contours in m, left) and 

geopotential height anomaly (shaded in m, right) for 24 January to 16 February 2015) 
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Figure 5. As seen in Figure 4 except for 850 hPa mean temperatures (contours in K, left) and 

temperature anomalies (shaded in K, right) for 24 January to 16 February 2015) 
 

 
Figure 6. Transition Probabilities after 10 Days. 
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Figure 7. Transition Probabilities after 20 Days. 

 

 
Figure 8. Transition Probabilities after 30 Days. 
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Figure 9. Statistically significant transition probabilities in shaded boxes based on Bootstrap test. 
 

 

Figure 10. Temporal Frequency in percent of each regime per year.  
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Figure 11. BiPlot showing spatial relationships between 30 total regimes. 
 

 
 

BiPlot	

Figure 12. Regime 1 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 13. Regime 2 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 14. Regime 3 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 15. Regime 4 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 16. Regime 5 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 17. Regime 6 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 19. Regime 8 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 18. Regime 7 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 20. Regime 9 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 21. Regime 10 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 22. Regime 11 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 23. Regime 12 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 24. Regime 13 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 25. Regime 14 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 27. Regime 16 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 26. Regime 15 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 29. Regime 18 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 28. Regime 17 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 30. Regime 19 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 31. Regime 20 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 32. Regime 21 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 33. Regime 22 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 35. Regime 24 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 34. Regime 23 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 36. Regime 25 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 37. Regime 26 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 38. Regime 27 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 39. Regime 28 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 40. Regime 29 as shown 
by Standardized PV anomalies 

on the DT. 

Figure 41. Regime 30 as shown 
by Standardized PV anomalies 

on the DT. 
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Figure 42. Return flow regime tracks. Initial regime is denoted in blue representing the starting 

point at the bottom row of the graph. Pink is 5 day lead time, lime green is 10 day lead time, 
purple is 15 day lead time, orange is 20 day lead time, dark green is 25 day lead time, and the top 

purple is the ending point at 30 day lead time.  
 

 
Figure 43. Spread of observed PNA index on each regime group.    
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Figure 44. Spread of observed NAO index on each regime group.  

 

 
Figure 45. Spread of observed AO index on each regime group.  
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Figure 46. Standardized PV anomalies obtained from CFS Reanalysis data from 28-30 June, 

2010. 
 

  
Figure 47. Spread of observed PNA on Days with individual correlation to Leading 5 PCs at or 

above 0.6. 
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Figure 48. Spread of observed PNA (Green), NAO (Red), and AO (Blue) on in individual days 

with correlation to Leading 5 PCs at or above 0.6.  
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